Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Signal Transduct Target Ther ; 7(1): 397, 2022 12 14.
Artículo en Inglés | MEDLINE | ID: covidwho-2325082

RESUMEN

The high effectiveness of the third dose of BNT162b2 in healthy adolescents against Omicron BA.1 has been reported in some studies, but immune responses conferring this protection are not yet elucidated. In this analysis, our study (NCT04800133) aims to evaluate the humoral and cellular responses against wild-type and Omicron (BA.1, BA.2 and/or BA.5) SARS-CoV-2 before and after a third dose of BNT162b2 in healthy adolescents. At 5 months after 2 doses, S IgG, S IgG Fc receptor-binding, and neutralising antibody responses waned significantly, yet neutralising antibodies remained detectable in all tested adolescents and S IgG avidity increased from 1 month after 2 doses. The antibody responses and S-specific IFN-γ+ and IL-2+ CD8+ T cell responses were significantly boosted in healthy adolescents after a homologous third dose of BNT162b2. Compared to adults, humoral responses for the third dose were non-inferior or superior in adolescents. The S-specific IFN-γ+ and IL-2+ CD4+ and CD8+ T cell responses in adolescents and adults were comparable or non-inferior. Interestingly, after 3 doses, adolescents had preserved S IgG, S IgG avidity, S IgG FcγRIIIa-binding, against Omicron BA.2, as well as preserved cellular responses against BA.1 S and moderate neutralisation levels against BA.1, BA.2 and BA.5. Sera from 100 and 96% of adolescents tested at 1 and 5 months after two doses could also neutralise BA.1. Our study found high antibody and T cell responses, including potent cross-variant reactivity, after three doses of BNT162b2 vaccine in adolescents in its current formulation, suggesting that current vaccines can be protective against symptomatic Omicron disease.


Asunto(s)
COVID-19 , SARS-CoV-2 , Adolescente , Humanos , Anticuerpos Neutralizantes , Vacuna BNT162 , Inmunoglobulina G , Interleucina-2
2.
Viruses ; 15(4)2023 04 11.
Artículo en Inglés | MEDLINE | ID: covidwho-2300917

RESUMEN

The evolution of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in the emergence of several variants of concern (VOC) with increased immune evasion and transmissibility. This has motivated studies to assess protection conferred by earlier strains following infection or vaccination to each new VOC. We hypothesized that while NAbs play a major role in protection against infection and disease, a heterologous reinfection or challenge may gain a foothold in the upper respiratory tract (URT) and result in a self-limited viral infection accompanied by an inflammatory response. To test this hypothesis, we infected K18-hACE2 mice with SARS-CoV-2 USA-WA1/2020 (WA1) and, after 24 days, challenged with WA1, Alpha, or Delta. While NAb titers against each virus were similar across all cohorts prior to challenge, the mice challenged with Alpha and Delta showed weight loss and upregulation of proinflammatory cytokines in the URT and lower RT (LRT). Mice challenged with WA1 showed complete protection. We noted increased levels of viral RNA transcripts only in the URT of mice challenged with Alpha and Delta. In conclusion, our results suggested self-limiting breakthrough infections of Alpha or Delta in the URT, which correlated with clinical signs and a significant inflammatory response in mice.


Asunto(s)
COVID-19 , Infecciones del Sistema Respiratorio , Animales , Humanos , Ratones , SARS-CoV-2/genética
3.
Microbiol Spectr ; 11(1): e0424022, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: covidwho-2231582

RESUMEN

The novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was identified in December of 2019 and is responsible for millions of infections and deaths across the globe. Vaccination against SARS-CoV-2 has proven effective to contain the spread of the virus and reduce disease. The production and distribution of these vaccines occurred at a remarkable pace, largely through the employment of the novel mRNA platform. However, interruptions in supply chain and high demand for clinical grade reagents have impeded the manufacture and distribution of mRNA vaccines at a time when accelerated vaccine deployment is crucial. Furthermore, the emergence of SARS-CoV-2 variants across the globe continues to threaten the efficacy of vaccines encoding the ancestral virus spike protein. Here, we report results from preclinical studies on mRNA vaccines developed using a proprietary mRNA production process developed by GreenLight Biosciences. Two mRNA vaccines encoding the full-length, nonstabilized SARS-CoV-2 spike protein, GLB-COV2-042 and GLB-COV2-043, containing uridine and pseudouridine, respectively, were evaluated in rodents for their immunogenicity and protection from SARS-CoV-2 challenge with the ancestral strain and the Alpha (B.1.1.7) and Beta (B.1.351) variants. In mice and hamsters, both vaccines induced robust spike-specific binding and neutralizing antibodies, and in mice, vaccines induced significant T cell responses with a clear Th1 bias. In hamsters, both vaccines conferred significant protection following challenge with SARS-CoV-2 as assessed by weight loss, viral load, and virus replication in the lungs and nasopharynx. These results support the development of GLB-COV2-042 and GLB-COV2-043 for clinical use. IMPORTANCE SARS-CoV-2 continues to disrupt everyday life and cause excess morbidity and mortality worldwide. Vaccination has been key to quelling the impact of this respiratory pathogen, and mRNA vaccines have led the charge on this front. However, the emergence of SARS-CoV-2 variants has sparked fears regarding vaccine efficacy. Furthermore, SARS-CoV-2 vaccines continue to be unevenly distributed across the globe. For these reasons and despite the success of emergency authorized and licensed SARS-CoV-2 vaccines, additional vaccines are needed to meet public health demands. The studies presented here are significant as they demonstrate robust protective efficacy of mRNA vaccines developed by GreenLight Biosciences against not only wild-type SARS-CoV-2, but also Alpha and Beta variants. These results support the progression of GreenLight Biosciences SARS-CoV-2 mRNA vaccines to clinical trials as another defense against SARS-CoV-2.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , SARS-CoV-2 , Vacunas de ARNm , Animales , Cricetinae , Humanos , Ratones , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunas contra la COVID-19/inmunología , Vacunas de ARNm/inmunología , SARS-CoV-2/genética
5.
Nature ; 2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: covidwho-2096734

RESUMEN

The BA.2 sublineage of the SARS-CoV-2 Omicron variant has become dominant in most countries around the world; however, the prevalence of BA.4 and BA.5 is increasing rapidly in several regions. BA.2 is less pathogenic in animal models than previously circulating variants of concern1-4. Compared with BA.2, however, BA.4 and BA.5 possess additional substitutions in the spike protein, which play a key role in viral entry, raising concerns that the replication capacity and pathogenicity of BA.4 and BA.5 are higher than those of BA.2. Here we have evaluated the replicative ability and pathogenicity of BA.4 and BA.5 isolates in wild-type Syrian hamsters, human ACE2 (hACE2) transgenic hamsters and hACE2 transgenic mice. We have observed no obvious differences among BA.2, BA.4 and BA.5 isolates in growth ability or pathogenicity in rodent models, and less pathogenicity compared to a previously circulating Delta (B.1.617.2 lineage) isolate. In addition, in vivo competition experiments revealed that BA.5 outcompeted BA.2 in hamsters, whereas BA.4 and BA.2 exhibited similar fitness. These findings suggest that BA.4 and BA.5 clinical isolates have similar pathogenicity to BA.2 in rodents and that BA.5 possesses viral fitness superior to that of BA.2.

6.
JAMA ; 328(15): 1523-1533, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: covidwho-2074838

RESUMEN

Importance: Data on the epidemiology of mild to moderately severe COVID-19 are needed to inform public health guidance. Objective: To evaluate associations between 2 or 3 doses of mRNA COVID-19 vaccine and attenuation of symptoms and viral RNA load across SARS-CoV-2 viral lineages. Design, Setting, and Participants: A prospective cohort study of essential and frontline workers in Arizona, Florida, Minnesota, Oregon, Texas, and Utah with COVID-19 infection confirmed by reverse transcriptase-polymerase chain reaction testing and lineage classified by whole genome sequencing of specimens self-collected weekly and at COVID-19 illness symptom onset. This analysis was conducted among 1199 participants with SARS-CoV-2 from December 14, 2020, to April 19, 2022, with follow-up until May 9, 2022, reported. Exposures: SARS-CoV-2 lineage (origin strain, Delta variant, Omicron variant) and COVID-19 vaccination status. Main Outcomes and Measures: Clinical outcomes included presence of symptoms, specific symptoms (including fever or chills), illness duration, and medical care seeking. Virologic outcomes included viral load by quantitative reverse transcriptase-polymerase chain reaction testing along with viral viability. Results: Among 1199 participants with COVID-19 infection (714 [59.5%] women; median age, 41 years), 14.0% were infected with the origin strain, 24.0% with the Delta variant, and 62.0% with the Omicron variant. Participants vaccinated with the second vaccine dose 14 to 149 days before Delta infection were significantly less likely to be symptomatic compared with unvaccinated participants (21/27 [77.8%] vs 74/77 [96.1%]; OR, 0.13 [95% CI, 0-0.6]) and, when symptomatic, those vaccinated with the third dose 7 to 149 days before infection were significantly less likely to report fever or chills (5/13 [38.5%] vs 62/73 [84.9%]; OR, 0.07 [95% CI, 0.0-0.3]) and reported significantly fewer days of symptoms (10.2 vs 16.4; difference, -6.1 [95% CI, -11.8 to -0.4] days). Among those with Omicron infection, the risk of symptomatic infection did not differ significantly for the 2-dose vaccination status vs unvaccinated status and was significantly higher for the 3-dose recipients vs those who were unvaccinated (327/370 [88.4%] vs 85/107 [79.4%]; OR, 2.0 [95% CI, 1.1-3.5]). Among symptomatic Omicron infections, those vaccinated with the third dose 7 to 149 days before infection compared with those who were unvaccinated were significantly less likely to report fever or chills (160/311 [51.5%] vs 64/81 [79.0%]; OR, 0.25 [95% CI, 0.1-0.5]) or seek medical care (45/308 [14.6%] vs 20/81 [24.7%]; OR, 0.45 [95% CI, 0.2-0.9]). Participants with Delta and Omicron infections who received the second dose 14 to 149 days before infection had a significantly lower mean viral load compared with unvaccinated participants (3 vs 4.1 log10 copies/µL; difference, -1.0 [95% CI, -1.7 to -0.2] for Delta and 2.8 vs 3.5 log10 copies/µL, difference, -1.0 [95% CI, -1.7 to -0.3] for Omicron). Conclusions and Relevance: In a cohort of US essential and frontline workers with SARS-CoV-2 infections, recent vaccination with 2 or 3 mRNA vaccine doses less than 150 days before infection with Delta or Omicron variants, compared with being unvaccinated, was associated with attenuated symptoms, duration of illness, medical care seeking, or viral load for some comparisons, although the precision and statistical significance of specific estimates varied.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Vacunación , Carga Viral , Adulto , Femenino , Humanos , Masculino , COVID-19/diagnóstico , COVID-19/genética , COVID-19/prevención & control , COVID-19/virología , Vacunas contra la COVID-19/administración & dosificación , Vacunas contra la COVID-19/uso terapéutico , Estudios Prospectivos , ARN Viral/análisis , ARN Viral/genética , ADN Polimerasa Dirigida por ARN , SARS-CoV-2/genética , Vacunación/estadística & datos numéricos , Estados Unidos/epidemiología , Carga Viral/efectos de los fármacos , Carga Viral/genética , Carga Viral/estadística & datos numéricos , Secuenciación Completa del Genoma , Infecciones Asintomáticas/epidemiología , Infecciones Asintomáticas/terapia , Factores de Tiempo , Aceptación de la Atención de Salud/estadística & datos numéricos
7.
Open Forum Infect Dis ; 9(10): ofac490, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: covidwho-2062949

RESUMEN

Although numerous studies have evaluated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection using cycle threshold (Ct) values as a surrogate of viral ribonucleic acid (RNA) load, few studies have used standardized, quantitative methods. We validated a quantitative SARS-CoV-2 digital polymerase chain reaction assay normalized to World Health Organization International Units and correlated viral RNA load with symptoms and disease severity.

8.
J Clin Virol ; 156: 105273, 2022 11.
Artículo en Inglés | MEDLINE | ID: covidwho-2004204

RESUMEN

BACKGROUND: BA.2.12.1, BA.4 and BA.5 subvariants of SARS-CoV-2 variant-of-concern (VOC) Omicron (B.1.1.529) are spreading globally. They demonstrate higher transmissibility and immune escape. OBJECTIVES: Determine BA.2.12.1, BA.4 and BA.5 virus plaque reduction neutralization test (PRNT) antibody titres in individuals recently vaccinated with BNT162b2 (n = 20) or CoronaVac (n = 20) vaccines or those convalescent from ancestral wild- type (WT) SARS-CoV-2 (n = 20) or BA.2 infections with (n = 17) or without (n = 7) prior vaccination. RESULTS: Relative to neutralization of the WT virus, those vaccinated with BNT162b2 had 4.8, 3.4, 4.6, 11.3 and 15.5-fold reductions of geometric mean antibody titres (GMT) to BA.1, BA.2, BA.2.12.1, BA.4 and BA.5 viruses, respectively. Similarly, those vaccinated with CoronaVac had 8.0, 7.0, 11.8, 12.0 and 12.0 fold GMT reductions and those with two doses of CoronaVac boosted by BNT162b2 had 6.1, 6.7, 6,3, 13.0 and 21.2 fold GMT reductions to these viruses, respectively. Vaccinated individuals with BA.2 breakthrough infections had higher GMT antibody levels vs. BA.4 (36.9) and BA.5 (36.9) than unvaccinated individuals with BA.2 infections (BA.4 GMT 8.2; BA.5 GMT 11.0). CONCLUSIONS: BA.4 and BA.5 subvariants were less susceptible to BNT162b2 or CoronaVac vaccine elicited antibody neutralization than subvariants BA.1, BA.2 and BA.2.12.1. Nevertheless, three doses BNT162b2 or booster of BNT162b2 following two doses of CoronaVac elicited detectable BA.4 and BA.5 neutralizing antibody responses while those vaccinated with three doses of CoronaVac largely fail to do so. BA.2 infections in vaccinated individuals led to higher levels of BA.4 or BA.5 neutralizing antibody compared to those who were vaccine-naive.


Asunto(s)
COVID-19 , Vacunas Virales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Vacuna BNT162 , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , SARS-CoV-2
9.
BMC Public Health ; 22(1): 1361, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: covidwho-1938302

RESUMEN

BACKGROUND: COVID-19 has caused over 305 million infections and nearly 5.5 million deaths globally. With complete eradication unlikely, organizations will need to evaluate their risk and the benefits of mitigation strategies, including the effects of regular asymptomatic testing. We developed a web application and R package that provides estimates and visualizations to aid the assessment of organizational infection risk and testing benefits to facilitate decision-making, which combines internal and community information with malleable assumptions. RESULTS: Our web application, covidscreen, presents estimated values of risk metrics in an intuitive graphical format. It shows the current expected number of active, primarily community-acquired infections among employees in an organization. It calculates and explains the absolute and relative risk reduction of an intervention, relative to the baseline scenario, and shows the value of testing vaccinated and unvaccinated employees. In addition, the web interface allows users to profile risk over a chosen range of input values. The performance and output are illustrated using simulations and a real-world example from the employee testing program of a pediatric oncology specialty hospital. CONCLUSIONS: As the COVID-19 pandemic continues to evolve, covidscreen can assist organizations in making informed decisions about whether to incorporate covid test based screening as part of their on-campus risk-mitigation strategy. The web application, R package, and source code are freely available online (see "Availability of data and materials").


Asunto(s)
COVID-19 , Aplicaciones Móviles , COVID-19/diagnóstico , COVID-19/prevención & control , Prueba de COVID-19 , Niño , Humanos , Tamizaje Masivo , Pandemias/prevención & control
10.
PLoS One ; 17(5): e0268237, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-1910639

RESUMEN

COVID-19 remains a challenge worldwide, and testing of asymptomatic individuals remains critical to pandemic control measures. Starting March 2020, a total of 7497 hospital employees were tested at least weekly for SARS CoV-2; the cumulative incidence of asymptomatic infections was 5.64%. Consistently over a 14-month period half of COVID-19 infections (414 of 820, total) were detected through the asymptomatic screening program, a third of whom never developed any symptoms during follow-up. Prompt detection and isolation of these cases substantially reduced the risk of potential workplace and outside of workplace transmission. COVID-19 vaccinations of the workforce were initiated in December 2020. Twenty-one individuals tested positive after being fully vaccinated (3.9 per 1000 vaccinated). Most (61.9%) remained asymptomatic and in majority (75%) the virus could not be sequenced due to low template RNA levels in swab samples. Further routine testing of vaccinated asymptomatic employees was stopped and will be redeployed if needed; routine testing for those not vaccinated continues. Asymptomatic SARS-CoV-2 testing, as a part of enhanced screening, monitors local dynamics of the COVID-19 pandemic and can provide valuable data to assess the ongoing impact of COVID-19 vaccination and SARS-CoV-2 variants, inform risk mitigation, and guide adaptive, operational planning including titration of screening strategies over time, based on infection risk modifiers such as vaccination.


Asunto(s)
COVID-19 , COVID-19/diagnóstico , COVID-19/epidemiología , COVID-19/prevención & control , Prueba de COVID-19 , Vacunas contra la COVID-19 , Humanos , Pandemias/prevención & control , SARS-CoV-2 , Recursos Humanos
11.
Vaccine ; 40(32): 4303-4306, 2022 07 30.
Artículo en Inglés | MEDLINE | ID: covidwho-1882607

RESUMEN

The diversity of SARS-CoV-2 continues to lead to the emergence of new SARS-CoV-2 variants. SARS-CoV-2 antibody assays are crucial in managing the COVID-19 pandemic by determining the neutralizing antibody response. This study aims to investigate vaccine-induced antibodies against most common variants of SARS-CoV-2 in Egypt. Sera samples were collected from vaccinated participants and neutralizing activity against the SARS-CoV-2 variants was determined using microneutralization assay. Our results show that the BNT162b2 (Pfizer-BioNTech), ChAdOx1 nCov-19 (AstraZeneca), and Ad26.COV2.S COVID-19 (Janssen) vaccines elicited neutralizing antibody responses more than the BBIBP-CorV vaccine (Sinopharm) against B.1, C.36.3, and AY.32 (Delta) variants. While vaccines remain highly effective in managing the COVID-19 pandemic, ongoing monitoring of vaccine effectiveness is needed.


Asunto(s)
COVID-19 , SARS-CoV-2 , Ad26COVS1 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Vacuna BNT162 , COVID-19/epidemiología , COVID-19/prevención & control , ChAdOx1 nCoV-19 , Egipto/epidemiología , Humanos , Inmunidad Humoral , Pandemias
12.
Transbound Emerg Dis ; 69(5): e3297-e3304, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: covidwho-1879106

RESUMEN

The ongoing coronavirus disease 2019 pandemic and its overlap with the influenza season lead to concerns over severe disease caused by the influenza virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) co-infections. Using a Syrian hamster co-infection model with SARS-CoV-2 and the pandemic influenza virus A/California/04/2009 (H1N1), we found (a) more severe disease in co-infected animals, compared to those infected with influenza virus alone but not SARS-CoV-2 infection alone; (b) altered haematological changes in only co-infected animals and (c) altered influenza virus tropism in the respiratory tracts of co-infected animals. Overall, our study revealed that co-infection with SARS-CoV-2 and influenza virus is associated with altered disease severity and tissue tropism, as well as haematological changes, compared to infection with either virus alone.


Asunto(s)
COVID-19 , Coinfección , Subtipo H1N1 del Virus de la Influenza A , Gripe Humana , Enfermedades de los Roedores , Animales , COVID-19/veterinaria , Coinfección/veterinaria , Cricetinae , Humanos , Mesocricetus , SARS-CoV-2 , Tropismo Viral
13.
Influenza Other Respir Viruses ; 16(5): 851-853, 2022 09.
Artículo en Inglés | MEDLINE | ID: covidwho-1865100

RESUMEN

OBJECTIVE: The objective of this study is to assess the utility of a nucleic acid amplification test-based approach to shorten isolation of healthcare workers (HCWs) with COVID-19 in the setting of the highly transmissible omicron variant. METHODS: Between December 24, 2021, and January 5, 2022, HCWs who tested positive for SARS-CoV-2 were retested with PCR at least 5 days since onset of symptoms. RESULTS: Forty-six sequential fully COVID-19 vaccinated HCWs who had tested positive for SARS-CoV-2 underwent follow-up testing. All the samples were confirmed as omicron variants and only four (8.7%) were negative in the follow-up test performed at a median of 6 (range 5-12) since onset of symptoms. CONCLUSIONS: Implementation of a test-based strategy is logistically challenging, increases costs, and did not lead to shorter isolation in our institution.


Asunto(s)
COVID-19 , Personal de Salud , Humanos , Técnicas de Amplificación de Ácido Nucleico , Reinserción al Trabajo , SARS-CoV-2/genética
14.
J Virol ; 96(7): e0010022, 2022 04 13.
Artículo en Inglés | MEDLINE | ID: covidwho-1728835

RESUMEN

Understanding how animal influenza A viruses (IAVs) acquire airborne transmissibility in humans and ferrets is needed to prepare for and respond to pandemics. Here, we investigated in ferrets the replication and transmission of swine H1N1 isolates P4 and G15, whose majority population had decreased polymerase activity and poor hemagglutinin (HA) stability, respectively. For both isolates, a minor variant was selected and transmitted in ferrets. Polymerase-enhancing variant PA-S321 airborne-transmitted and propagated in one ferret. HA-stabilizing variant HA1-S210 was selected in all G15-inoculated ferrets and was transmitted by contact and airborne routes. With an efficient polymerase and a stable HA, the purified minor variant G15-HA1-S210 had earlier and higher peak titers in inoculated ferrets and was recovered at a higher frequency after airborne transmission than P4 and G15. Overall, HA stabilization played a more prominent role than polymerase enhancement in the replication and transmission of these viruses in ferrets. The results suggest pandemic risk-assessment studies may benefit from deep sequencing to identify minor variants with human-adapted traits. IMPORTANCE Diverse IAVs circulate in animals, yet few acquire the viral traits needed to start a human pandemic. A stabilized HA and mammalian-adapted polymerase have been shown to promote the adaptation of IAVs to humans and ferrets (the gold-standard model for IAV replication, pathogenicity, and transmissibility). Here, we used swine IAV isolates of the gamma lineage as a model to investigate the importance of HA stability and polymerase activity in promoting replication and transmission in ferrets. These are emerging viruses that bind to both α-2,6- and α-2,3-linked receptors. Using isolates containing mixed populations, a stabilized HA was selected within days in inoculated ferrets. An enhanced polymerase was also selected and propagated after airborne transmission to a ferret. Thus, HA stabilization was a stricter requirement, yet both traits promoted transmissibility. Knowing the viral traits needed for pandemic potential, and the relative importance of each, will help identify emerging viruses of greatest concern.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza , Subtipo H1N1 del Virus de la Influenza A , Infecciones por Orthomyxoviridae , Animales , Hurones , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Humanos , Infecciones por Orthomyxoviridae/transmisión , Infecciones por Orthomyxoviridae/virología , Estabilidad Proteica , Porcinos
15.
Appl Biosaf ; 27(2): 58-63, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: covidwho-1722150

RESUMEN

Background: The Animal Biosafety Level 3 Enhanced (ABSL-3+) laboratory at St. Jude Children's Research Hospital has a long history of influenza pandemic preparedness. The emergence of SARS-CoV-2 and subsequent expansion into a pandemic has put new and unanticipated demands on laboratory operations since April 2020. Administrative changes, investigative methods requiring increased demand for inactivation and validation of sample removal, and the adoption of a new animal model into the space required all arms of our Biorisk Management System (BMS) to respond with speed and innovation. Results: In this report, we describe the outcomes of three major operational changes that were implemented to adapt the ABSL-3+ select agent space into a multipathogen laboratory. First were administrative controls that were revised and developed with new Institutional Biosafety Committee protocols, laboratory space segregation, training of staff, and occupational health changes for potential exposure to SARS-CoV-2 inside the laboratory. Second were extensive inactivation and validation experiments performed for both highly pathogenic avian influenza and SARS-CoV-2 to meet the demands for sample removal to a lower biosafety level. Third was the establishment of a new caging system to house Syrian Golden hamsters for SARS-CoV-2 risk assessment modeling. Summary: The demands placed on biocontainment laboratories for response to SARS-CoV-2 has highlighted the importance of a robust BMS. In a relatively short time, the ABSL-3+ was able to adapt from a single select agent space to a multipathogen laboratory and expand our pandemic response capacity.

16.
Vaccines (Basel) ; 9(11)2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: covidwho-1524224

RESUMEN

Stable, effective, easy-to-manufacture vaccines are critical to stopping the COVID-19 pandemic resulting from the coronavirus SARS-CoV-2. We constructed a vaccine candidate CoV-RBD121-NP, which is comprised of the SARS-CoV-2 receptor-binding domain (RBD) of the spike glycoprotein (S) fused to a human IgG1 Fc domain (CoV-RBD121) and conjugated to a modified tobacco mosaic virus (TMV) nanoparticle. In vitro, CoV-RBD121 bound to the host virus receptor ACE2 and to the monoclonal antibody CR3022, a neutralizing antibody that blocks S binding to ACE2. The CoV-RBD121-NP vaccine candidate retained key SARS-CoV-2 spike protein epitopes, had consistent manufacturing release properties of safety, identity, and strength, and displayed stable potency when stored for 12 months at 2-8 °C or 22-28 °C. Immunogenicity studies revealed strong antibody responses in C57BL/6 mice with non-adjuvanted or adjuvanted (7909 CpG) formulations. The non-adjuvanted vaccine induced a balanced Th1/Th2 response and antibodies that recognized both the S1 domain and full S protein from SARS2-CoV-2, whereas the adjuvanted vaccine induced a Th1-biased response. Both adjuvanted and non-adjuvanted vaccines induced virus neutralizing titers as measured by three different assays. Collectively, these data showed the production of a stable candidate vaccine for COVID-19 through the association of the SARS-CoV-2 RBD with the TMV-like nanoparticle.

17.
Emerg Infect Dis ; 27(10): 2619-2627, 2021 10.
Artículo en Inglés | MEDLINE | ID: covidwho-1453198

RESUMEN

The numerous global outbreaks and continuous reassortments of highly pathogenic avian influenza (HPAI) A(H5N6/H5N8) clade 2.3.4.4 viruses in birds pose a major risk to the public health. We investigated the tropism and innate host responses of 5 recent HPAI A(H5N6/H5N8) avian isolates of clades 2.3.4.4b, e, and h in human airway organoids and primary human alveolar epithelial cells. The HPAI A(H5N6/H5N8) avian isolates replicated productively but with lower competence than the influenza A(H1N1)pdm09, HPAI A(H5N1), and HPAI A(H5N6) isolates from humans in both or either models. They showed differential cellular tropism in human airway organoids; some infected all 4 major epithelial cell types: ciliated cells, club cells, goblet cells, and basal cells. Our results suggest zoonotic potential but low transmissibility of the HPAI A(H5N6/H5N8) avian isolates among humans. These viruses induced low levels of proinflammatory cytokines/chemokines, which are unlikely to contribute to the pathogenesis of severe disease.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Subtipo H5N1 del Virus de la Influenza A , Subtipo H5N8 del Virus de la Influenza A , Gripe Aviar , Gripe Humana , Animales , Aves , Humanos , Subtipo H5N1 del Virus de la Influenza A/genética , Gripe Aviar/epidemiología , Medición de Riesgo
18.
Immunity ; 54(9): 2159-2166.e6, 2021 09 14.
Artículo en Inglés | MEDLINE | ID: covidwho-1454205

RESUMEN

The emergence of SARS-CoV-2 antigenic variants with increased transmissibility is a public health threat. Some variants show substantial resistance to neutralization by SARS-CoV-2 infection- or vaccination-induced antibodies. Here, we analyzed receptor binding domain-binding monoclonal antibodies derived from SARS-CoV-2 mRNA vaccine-elicited germinal center B cells for neutralizing activity against the WA1/2020 D614G SARS-CoV-2 strain and variants of concern. Of five monoclonal antibodies that potently neutralized the WA1/2020 D614G strain, all retained neutralizing capacity against the B.1.617.2 variant, four also neutralized the B.1.1.7 variant, and only one, 2C08, also neutralized the B.1.351 and B.1.1.28 variants. 2C08 reduced lung viral load and morbidity in hamsters challenged with the WA1/2020 D614G, B.1.351, or B.1.617.2 strains. Clonal analysis identified 2C08-like public clonotypes among B cells responding to SARS-CoV-2 infection or vaccination in 41 out of 181 individuals. Thus, 2C08-like antibodies can be induced by SARS-CoV-2 vaccines and mitigate resistance by circulating variants of concern.


Asunto(s)
Anticuerpos Monoclonales/metabolismo , Anticuerpos Neutralizantes/metabolismo , Anticuerpos Antivirales/metabolismo , Linfocitos B/inmunología , Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , Centro Germinal/inmunología , Pulmón/virología , SARS-CoV-2/fisiología , Animales , Células Cultivadas , Células Clonales , Cricetinae , Modelos Animales de Enfermedad , Humanos , Pruebas de Neutralización , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunación , Carga Viral
19.
Open Forum Infect Dis ; 8(9): ofab420, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: covidwho-1437840

RESUMEN

The efficacy of coronavirus disease 2019 (COVID-19) vaccines administered after COVID-19-specific monoclonal antibody is unknown, and "antibody interference" might hinder immune responses leading to vaccine failure. In an institutional review board-approved prospective study, we found that an individual who received mRNA COVID-19 vaccination <40 days after COVID-19-specific monoclonal antibody therapy for symptomatic COVID-19 had similar postvaccine antibody responses to SARS-CoV-2 receptor binding domain (RBD) for 4 important SARS-CoV-2 variants (B.1, B.1.1.7, B.1.351, and P.1) as other participants who were also vaccinated following COVID-19. Vaccination against COVID-19 shortly after COVID-19-specific monoclonal antibody can boost and expand antibody protection, questioning the need to delay vaccination in this setting. TRIAL REGISTRATION: The St. Jude Tracking of Viral and Host Factors Associated with COVID-19 study; NCT04362995; https://clinicaltrials.gov/ct2/show/NCT04362995.

20.
Exp Mol Med ; 53(5): 737-749, 2021 05.
Artículo en Inglés | MEDLINE | ID: covidwho-1387171

RESUMEN

The influenza virus is a global threat to human health causing unpredictable yet recurring pandemics, the last four emerging over the course of a hundred years. As our knowledge of influenza virus evolution, distribution, and transmission has increased, paths to pandemic preparedness have become apparent. In the 1950s, the World Health Organization (WHO) established a global influenza surveillance network that is now composed of institutions in 122 member states. This and other surveillance networks monitor circulating influenza strains in humans and animal reservoirs and are primed to detect influenza strains with pandemic potential. Both the United States Centers for Disease Control and Prevention and the WHO have also developed pandemic risk assessment tools that evaluate specific aspects of emerging influenza strains to develop a systematic process of determining research and funding priorities according to the risk of emergence and potential impact. Here, we review the history of influenza pandemic preparedness and the current state of preparedness, and we propose additional measures for improvement. We also comment on the intersection between the influenza pandemic preparedness network and the current SARS-CoV-2 crisis. We must continually evaluate and revise our risk assessment and pandemic preparedness plans and incorporate new information gathered from research and global crises.


Asunto(s)
Gripe Humana/epidemiología , Animales , COVID-19/epidemiología , COVID-19/prevención & control , Humanos , Virus de la Influenza A/aislamiento & purificación , Gripe Humana/prevención & control , Pandemias/prevención & control , Medición de Riesgo , Organización Mundial de la Salud
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA